ARTICLE

MODELING AND PREDICTING COMMUTERS TRAVEL MODE CHOICE IN LAHORE PAKISTAN

12 Pages : 106-118

http://dx.doi.org/10.31703/gssr.2021(VI-III).12      10.31703/gssr.2021(VI-III).12      Published : Sep 2021

Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan

    The travel mode preference exists in both culture and theenvironment. The wide scale of people's mobility makesour cities more polluted and congested, eventually affecting urban assets.Understanding people’s mode choice is important to develop urbantransportation planning policies effectively. This study aims to model andpredict the commuter’s mode choice behaviour in Lahore, Pakistan. A surveywas conducted, and the data was used for model validation. The comparative study was further done among multinomial logit model (MNL),Random Forest (RF), and K-Nearest Neighbor (KNN) classification approaches. It’s common in existing studies that vehicle ownership is rankedas the most important among all features impacting commuters’ travel modechoice. Since many commuters in Lahore own no vehicle, it’s unclear whatthe rank of factors impacting non-vehicle owners is. Other than thecomparison of predicting the performance of the methods, our contributionis to do more analysis of the rank of factors impacting the different types ofcommuters. It was observed that occupation is ranked as the most importantamong all features for non-vehicle owners.

    (1) Fariha Tariq
    Department of City and Regional Planning, University of Management and Technology, Lahore, Punjab, Pakistan.
    (2) Nabeel Shakeel
    Department of City and Regional Planning, University of Management and Technology, Lahore, Punjab, Pakistan.
  • Abelson, R. P. (1995). Statistics as Principled Argument. Psychology Press, New York, USA.
  • Altares, P.S. et al. (2003). Elementary Statistics: A modern Approach. Rex Book Store Manila, Philippines, p. 13.
  • Althoff, T., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale physical activity data reveal worldwide activity inequality. Nature, 547(7663), 336-339.
  • Assi, K. J., Nahiduzzaman, K. M., Ratrout, N. T., & Aldosary, A. S. (2018). Mode choice behavior of high school goers: Evaluating logistic regression and MLP neural networks. Case Studies on Transport Policy, 6(2), 225-230.
  • Aziz, A., Nawaz, M. S., Nadeem, M., & Afzal, L. (2018). Examining suitability of the integrated public transport system: A case study of Lahore. Transportation Research Part A: Policy and Practice, 117, 13-25.
  • Belgiawan, P. F., Ilahi, A., & Axhausen, K. W. (2019). Influence of pricing on mode choice decision in Jakarta: A random regret minimization model. Case Studies on Transport Policy, 7(1), 87-95.
  • Breiman, L. (2001). Random Forests. Machine Learning 45, 5-32.
  • Buehler, R. (2011). Determinants of transport mode choice: a comparison of Germany and the USA. Journal of Transport Geography, 19(4), 644-657.
  • Cumming, I., Weal, Z., Afzali, R., Rezaei, S., & Idris, A. O. (2019). The impacts of office relocation on commuting mode shift behaviour in the context of Transportation Demand Management (TDM). Case Studies on Transport Policy, 7(2), 346-356.
  • Elhenawy, M., Rakha, H. A., & El-Shawarby, I. (2014). Enhanced modeling of driver stop- or-run actions at a yellow indication: Use of historical behavior and machine learning methods. Transportation Research Record, 2423(1), 24-34.
  • Ermagun, A., & Samimi, A. (2015). Promoting active transportation modes in school trips. Transport Policy, 37, 203-211.
  • Ewing, R., & Cervero, R. (2010). Travel and the built environment: A meta-analysis. Journal of the American Planning Association, 76(3), 265-294.
  • Field, A. (2009). Discovering statistics using SPSS, Sage Publications Ltd.
  • Gao, Y., Chen, X., Li, T., & Chen, F. (2017). Differences in pupils' school commute characteristics and mode choice based on the household registration system in China. Case Studies on Transport Policy, 5(4), 656-661.
  • Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225-2236.
  • Giuliano, G., & Dargay, J. (2006). Car ownership, travel and land use: a comparison of the US and Great Britain. Transportation Research Part A: Policy and Practice, 40(2), 106-124.
  • Hand, D., Mannila, M., & Smyth, P. (2001). Principles of Data Mining. United States of America: The MIT Press.
  • Hou, Y., Edara, P., & Sun, C. (2014). Traffic flow forecasting for urban work zones. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1761-1770.
  • Hu, H., Xu, J., Shen, Q., Shi, F., & Chen, Y. (2018). Travel mode choices in small cities of China: A case study of Changting. Transportation Research Part D: Transport and Environment, 59, 361-374.
  • Jahangiri, A., & Rakha, H. A. (2015). Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data. IEEE Transactions on Intelligent Transportation Systems, 1-12.
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Application in R. New York: Springer.
  • Lanzini, P., & Khan, S. A. (2017). Shedding light on the psychological and behavioral determinants of travel mode choice: A meta-analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 48, 13- 27.
  • Lo, S. H., van Breukelen, G. J., Peters, G. J. Y., & Kok, G. (2016). Commuting travel mode choice among office workers: Comparing an Extended Theory of Planned Behavior model between regions and organizational sectors. Travel Behaviour and Society, 4, 1- 10.
  • Montini, L., Rieser-Schüssler, N., Horni, A., & Axhausen, K. W. (2014). Trip purpose identification from GPS tracks. Transportation Research Record, 2405(1), 16-23.
  • Pakistan Population Census. (2017). Bureau of Statistic Govt. of Punjab, Pakistan.
  • Pucher, J., & Buehler, R. (2006). Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies. Transport Policy, 13(3), 265-279.
  • Rasouli, S., & Timmermans, H. J. (2014). Using ensembles of decision trees to predict transport mode choice decisions: Effects on predictive success and uncertainty estimates. European Journal of Transport and Infrastructure Research, 14(4), 412-424.
  • Rebollo, J. J., & Balakrishnan, H. (2014). Characterization and prediction of air traffic delays. Transportation Research Part C: Emerging Technologies, 44, 231-241.
  • Shafique, M. A., & Hato, E. (2015). Use of acceleration data for transportation mode prediction. Transportation, 42(1), 163-188.
  • Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., & Khovanova, N. (2015). Machine learning for predictive modelling based on small data in biomedical engineering. IFAC-PapersOnLine, 48(20), 469-474.
  • Shakeel, N., Baig, F., & Saddiq, M. A. (2019). Modeling Commuter's Socio-demographic Characteristics to Predict Public Transport Usage Frequency by Applying Supervised Machine Learning Method. Transport Technic and Technology, 15(2), 1-7.
  • Sharifi, F., & Burris, M. W. (2019). Application of machine learning to characterize uneconomical managed lane choice behaviour. Case Studies on Transport Policy, 7(4), 781-789.
  • Sperry, B. R., Burris, M., & Woosnam, K. M. (2017). Investigating the impact of high- speed rail equipment visualization on mode choice models: Case study in central Texas. Case Studies on Transport Policy, 5(4), 560-572.
  • Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
  • United Nations Development Program. (2017). Pakistan National Human Development Report. Pakistan: UNDP.
  • Weinberger, R., & Goetzke, F. (2019). Automobile ownership and mode choice: Learned or instrumentally rational?. Travel Behaviour and Society, 16, 153-160.
  • Zahabi, S. A. H., Miranda-Moreno, L. F., Patterson, Z., & Barla, P. (2012). Evaluating the effects of land use and strategies for parking and transit supply on mode choice of downtown commuters. Journal of Transport and Land Use, 5(2), 103-119.
  • Zaklouta, F., & Stanciulescu, B. (2012). Real-time traffic-sign recognition using tree classifiers. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1507-1514.
  • Zhang, B. (2012). Reliable classification of vehicle types based on cascade classifier ensembles. IEEE Transactions on Intelligent Transportation Systems, 14(1), 322-332.
  • Zhang, R., Yao, E., & Liu, Z. (2017). School travel mode choice in Beijing, China. Journal of Transport Geography, 62, 98-110.
  • Zhang, Y., & Ling, C. (2018). A strategy to apply machine learning to small datasets in materials science. Npj Computational Materials, 4(1), 1-8.
  • Zhao, C. H., Zhang, B. L., He, J., & Lian, J. (2012). Recognition of driving postures by contourlet transform and random forests. IET Intelligent Transport Systems, 6(2), 161-168.

Cite this article

    CHICAGO : Tariq, Fariha, and Nabeel Shakeel. 2021. "Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan." Global Social Sciences Review, VI (III): 106-118 doi: 10.31703/gssr.2021(VI-III).12
    HARVARD : TARIQ, F. & SHAKEEL, N. 2021. Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan. Global Social Sciences Review, VI, 106-118.
    MHRA : Tariq, Fariha, and Nabeel Shakeel. 2021. "Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan." Global Social Sciences Review, VI: 106-118
    MLA : Tariq, Fariha, and Nabeel Shakeel. "Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan." Global Social Sciences Review, VI.III (2021): 106-118 Print.
    OXFORD : Tariq, Fariha and Shakeel, Nabeel (2021), "Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan", Global Social Sciences Review, VI (III), 106-118
    TURABIAN : Tariq, Fariha, and Nabeel Shakeel. "Modeling and Predicting Commuters' Travel Mode Choice in Lahore, Pakistan." Global Social Sciences Review VI, no. III (2021): 106-118. https://doi.org/10.31703/gssr.2021(VI-III).12